
Oxidation of Hydrocarbons by
[(phen)2Mn(µ-O)2Mn(phen)2]3+ via Hydrogen Atom
Abstraction

Kun Wang and James M. Mayer*

Department of Chemistry, Box 351700
UniVersity of Washington

Seattle, Washington 98195-1700

ReceiVed September 10, 1996

The oxidation of hydrocarbons by homogeneous, heteroge-
neous, and enzymatic reagents is of much fundamental and tech-
nological interest. We report here the first example of C-H
bond oxidation by a (µ-oxo)manganese complex, [L2Mn(µ-O)2-
MnL2](PF6)3 (1; L ) 1,10-phenanthroline).1 Activation of C-H
bonds byµ-oxo compounds has been suggested to occur in the
catalytic cycles of iron and copper enzymes.2 This study
complements a recently characterized diiron system that oxidizes
cumene2aand methylcyclohexadiene,2b as well as dicopper2c and
dicobalt3 systems that undergo intramolecular C-H activation.
Mixed valent1 (Mn3+Mn4+) has long been considered a model
for a part of the oxygen-evolving complex in photosystem II,
where oxidation of water has been proposed to occur by H•

abstraction from metal-bound water or hydroxide by an adjacent
tyrosine radical.4 We have proposed that the ability of metal
oxo species such as MnO4- and CrO2Cl2 to oxidize hydrocar-
bons by initial hydrogen atom abstraction is directly related to
the thermodynamic affinity of these reagents for H•, rather than
any radical character in the oxidant.5,6 With this approach, we
accuratelypredictedthat1 and2would abstract hydrogen atoms
from weak C-H bonds because of its affinity for H• (eqs 1 and
2, L ) phen) based on electrochemical and pKa data.7,8

A solution of 1 in acetonitrile (20 mM) reacts with 9,10-
dihydroanthracene (DHA, 40 mM) over 11 h at 65°C, with a
change in color from olive green to light brown (eq 3; all
reactions done in the absence of air). GC analysis of the organic
products revealed anthracene (19.4 mM) and traces of an-
thraquinone (0.4 mM) and anthrone (0.15 mM). Iodometric

titration9 of the isolated manganese product gave an average
oxidation state of 2.37(4), roughly consistent with the formation
of the Mn3+Mn2+ dimer3. The observed products account for
98% of the oxidizing equivalents of1 consumed. When only
half an equivalent of DHA is used (10 mM), the manganese
product has an average oxidation state of 2.92(4), consistent
with predominant formation of the Mn3+Mn3+ dimer 2. The
organic products (8 mM anthracene, 0.9 mM anthraquinone,
and trace anthrone) account for 93% of the manganese oxidizing
equivalents consumed. An isotope effect of 4.2(3) was found
on analyzing the products of the oxidation of a 50/50 mixture
of DHA-h12 and DHA-d12 by 1 at 55 °C. The reaction, as
monitored by UV/vis spectroscopy, shows no induction period,
and there are no isosbestic points. Absorbance vs time traces
indicate a consecutive reaction pattern, suggested to be1 f 2
f 3. Species2 and3 are generated independently from1 and
respective stoichiometric amounts of hydroquinone.10

The reaction of1 with fluorene in MeCN at 55°C gives
roughly equal yields of bifluorenyl and 9-fluorenone, accounting
for 76% of the oxidizing equivalents consumed. The formation
of bifluorenyl indicates that fluorenyl radicals are involved, as
was confirmed by trapping with CBrCl3 to give 9-bromofluo-
rene, as well as 9-fluorenone and bifluorenyl. The reaction with
DHA is similarly proposed to involve 9-hydroanthracenyl
radicals (HA•), by H atom transfer from DHA to1, forming 2
(Scheme 1). In order to explain the kinetic traces, it is necessary
to propose that2 can also react with DHA by H• abstraction.
HA• is then rapidly oxidized by1 or 2 to give anthracene and
2 or 3. The kinetic traces for the DHA reaction are successfully
simulated with this scheme using the computer programs
KINSIM/FITSIM.11 At 25 °C, k1 and k3 are well defined as
1.56(2)× 10-3 M-1 s-1 and 4.2(7)× 10-4 M-1 s-1, but the fit
is not sensitive to the much faster rate constants for trapping of
HA• (k2, k4 roughly 104-105M-1 s-1 from the fit). Independent
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oxidations of DHA with2 (prepared from1 + hydroquinone)
occur with a rate constant of 4.2× 10-3 M-1 s-1 at 50°C, in
excellent agreement with the simulation result (3.9× 10-3 M-1

s-1 at 50 °C). Over the temperature range of 25-55 °C, the
activation parameters are∆Hq

1 ) 14.5(10) kcal/mol,∆Sq
1 )

-23(3) eu;∆Hq
3 ) 16.0(10) kcal/mol,∆Sq

3 ) -21(3) eu. The
negative entropies of activation are consistent with bimolecular
rate-limiting steps and are similar to what we have observed in
other hydrogen atom transfer processes.5,6 ∆Hq

3 is larger than
∆Hq

1 presumably because the O-H bond formed on converting
1 to 2 is stronger than that formed from2 to 3.
Rates of hydrogen atom abstraction by main group radicals

such astBuO• and tBuOO• have long been known to correlate
with the ∆H° for the H• transfer step (the Evans-Polanyi
equation).12 This∆H° for reaction A-H + B f A + B-H is
the difference in the bond strength between A-H and B-H.
We have previously found that this relation connects the rate
constants for H• abstraction by MnO4- and CrO2Cl2 with
abstraction by oxygen radicals.5,6 Figure 1 shows this correla-
tion, log k vs the strength of the O-H bond formed by the
oxidant, for H• abstraction from DHA.13 The rate constants for
H• abstraction by both1 and2 roughly correlate with those for
tBuO• and secBuOO• (the straight line is defined by the rate
constants for the oxygen radicals). It appears that1 and2 react
slightly slower than predicted, while the MnO4- oxidation may
be slightly faster, although this kind of correlation is rarely
precise.12 It is surprising, however, that1 reacts only three times

faster than2 given the 4 kcal/mol stronger O-H bond formed.
These deviations from a simple correlation with driving force
may reflect different intrinsic barriers,14 perhaps due to structural
reorganizations on transferring an H• to a bridging oxygen.
Structural reorganizations have been implicated as the cause of
slow proton transfer to someµ-oxo groups.15

In summary, both [L2Mn(µ-O)2MnL2]3+ (1) and [L2Mn-
(µ-O)(µ-OH)MnL2]3+ (2; L ) 1,10-phenanthroline) can abstract
H• from hydrocarbons. The rate constants for these reactions
can be roughlypredictedbased on the strengths of the O-H
bonds that are formed. Studies with related substrates and
oxidants are in progress to define the scope of these reactions
and to understand the activation barriers in more detail.
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Scheme 1

Figure 1. Rate constants for hydrogen atom abstraction from dihy-
droanthracene (30°C) vs the strength of the O-H bond formed by
tBuO•, secBuOO•, MnO4

-, [L2Mn(O)2MnL2]3+, and [L2Mn(O)(OH)-
MnL2]3+.13 The straight line is defined by the values fortBuO• and
secBuOO•.
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